
Applications of Multi-Terminal
Binary Decision Diagrams

E. Clarke M. Fujita* X. Zhao

April, 1995
CMU-CS-95-160

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

* Fujitsu Laboratories of America Inc.
77 Rio Robles

San Jose, CA 95134

«12 046 Qm QUALITY IWflfsCTED 8

This research was sponsored in part by the National Science Foundation under Grant No. CCR-9217549,
by the Semiconductor Research Corporation under Contract No. 94-DJ-294, and by the Wright Laboratory,
Aeronautical Systems Center, Air Force Materiel Command, USAF, and the Advanced Research Projects
Agency (ARPA) under Grant No. F33615-93-1-1330. The US Government is authorized to reproduce and
distribute reprints for Government purposes, notwithstanding any copyright notation thereon.

Views and conclusions contained in this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied", of Wright Laboratory or the United States
Government.

Äoo©ßsloa FOP '''*5SWf

HTIS ÖEAfcl ÖX
DTIC TAB O
Unannounced Q
Jus 11 f 1 c a t i on ; —

Availability ßoa©!3_

Bist Special

ft

Keywords: binary decision diagrams, multi-terminal binary decision diagrams, binary
moment diagrams, hybrid decision diagrams, word level properties, arithmetic circuit, Pen-
tium, division circuit

Abstract

Functions that map boolean vectors into the integers are important for the design and
verification of arithmetic circuits. MTBDDs and BMDs have been proposed for representing
this class of functions. We discuss the relationship between these methods and describe a
generalization called hybrid decision diagrams which is often much more concise.
The Walsh transform and Reed-Muller transform have numerous applications in computer-
aided design, but the usefulness of these techniques in practice has been limited by the
size of the boolean functions that can be transformed. Currently available techniques limit
the functions to less than 20 variables. In this paper, we show how to compute concise
representations of the Walsh transform and Reed-Muller transform for functions with several
hundred variables.
We show how to implement arithemetic operations efficiently for hybrid decision diagrams. In
practice, this is one of the main limitations of BMDs since performing arithmetic operations
on functions expressed in this notation can be very expensive.
In order to extend symbolic model checking algorithms to handle arithmetic properties, it
is essential to be able to compute the BDD for the set of variable assignments that satisfy
an arithmetic relation. Bryant and Chen do not provide an algorithm for this.
In our paper, we give an efficient algorithm for this purpose. Moreover, we prove that
for the class of linear expressions, the time complexity of our algorithm is linear in the
number of variables. Our techniques for handling arithmetic operations and relations are
used intensively in the verification of an SRT division algorithm similar to the one that is

used in the Pentium.

1. Introduction

Large integer matrices arise naturally in the design and verification of arithmetic circuits.
In this paper, we describe how to represent and manipulate such matrices efficiently using
Multi-Terminal Binary Decision Diagrams (MTBDDs) [6]. An MTBDD is like an ordinary
Binary Decision Diagram except that the terminal nodes can be arbitrary integer values
instead of just 0 and 1. Previously, we have demonstrated how MTBDDs can be used
to represent functions that map boolean vectors into the integers. Our representation for
integer matrices is based on this technique. An integer matrix with dimensions 2m x 2™ can
be treated as a function that maps boolean vectors of length m + n into the integers. Various
matrix operations can be performed by operations on the corresponding integer functions.

The Walsh transform and the Reed-Muller transform [9] have numerous applications
in computer aided design, particularly in synthesis and testing of circuits. Unfortunately,
the usefulness of these techniques in practice has been limited by the size of the boolean
functions that can be handled by the transform. Since these transforms are given as vectors
with length of 2n where n is the number of variables in the function, currently available
techniques limit the functions to less than 20 variables. Since the Walsh matrix and the
Reed-Muller matrix have simple recursive definitions, they can be encoded efficiently by
MTBDDs. In this manner, we can compute concise representations for the transforms of
functions with several hundred variables.

Recently, Bryant and Chen [4] have proposed Binary Moment Diagrams (BMDs) for
representing functions that map boolean vectors into the integers. We show that the BMD of
a function is the MTBDD that results from applying the inverse Reed-Muller transformation
[10] to the function. The transformation can be computed using the techniques that we have
developed for manipulating large matrices. The transformation matrix in this case is the
Kronecker product [2] of a number of identical 2x2 matrices. We show that the Kronecker
products of other 2x2 matrices behave in a similar way. In fact, the transformations
obtained from Kronecker products of other matrices will in many cases be more concise than
the BMD. We have further generalized this idea so that the transformation matrix can be
the Kronecker product of different matrices. In this way, we obtain a representation, called
Hybrid Decision Diagram (HDD), that is more concise than either the MTBDD or the BMD.

One of the main limitations of Bryant and Chen's work is that performing arithmetic op-
erations on functions represented by BMDs is very expensive. We show how these operations
can be implemented not only for BMDs, but for hybrid decision diagrams as well. Although
the worst case complexity of some of these operations is exponential, our algorithms work

quite well in practice.

Most of the properties that we want to verify about arithmetic circuits can be expressed
as arithmetic relations. In order to extend symbolic model checking algorithms [5] to handle
arithmetic properties, it is essential to be able to compute the BDD for the set of variable
assignments that satisfy a relation. Bryant and Chen do not provide an algorithm for this.
In this paper, we give an efficient algorithm for this purpose. Moreover, we show that
for the class of linear expressions, the time complexity of our algorithm is linear in the
number of variables. Our techniques for handling arithmetic operations and relations are
used intensively in the verification of an SRT division algorithm similar to the one that is

used in the Pentium.

Our paper is organized as follows: Section 2 gives the basic properties of MTBDDs
that are used in the remainder of the paper. Section 3 shows how the results of the previous
section can be used to implement standard operations like addition and multiplication of very
large integer matrices. Section 4 describes how BDDs can be obtained for recursively defined
integer matrices and shows how to compute the spectral transforms for boolean functions. In
Section 4 we also illustrate the power of this representation, by computing the transforms of
several very large boolean functions. Section 5 describes the relationship between BMDs and
the inverse Reed-Muller transformation. This section also introduces Kronecker product and
shows how it can be used to generalize BMDs. The next section introduces hybrid decision
diagrams and provides experimental evidence to show the usefulness of this representation.
In Section 7, we show how arithmetic operations can be implemented. In Section 8, we
give an efficient algorithm for computing the set of assignments that satisfy an arithmetic
relation expressed in terms of hybrid decision diagrams. The paper concludes in Section 9
with a brief summary and a discussion of directions for future research.

2. Multi-terminal binary decision diagrams

Ordered binary decision diagrams (BDDs) are a canonical representation for boolean for-
mulas proposed by Bryant [3]. They are often substantially more compact than traditional
normal forms such as conjunctive normal form and disjunctive normal form. They can also
be manipulated very efficiently. Hence, BDDs have become widely used for a variety of
CAD applications, including symbolic simulation, verification of combinational logic and,
more recently, verification of sequential circuits.

A BDD is similar to a binary decision tree, except that its structure is a directed acyclic
graph rather than a tree, and there is a strict total order placed on the occurrence of
variables as one traverses the graph from root to leaf. Algorithms of linear complexity exist
for computing BDD representations of -■/ and fVg from the BDDs for the formulas / and g.

Let / : Bm —> Z be a function that maps boolean vectors of length m into integers.
Suppose rai,... ,n/v are the possible values of /. The function / partitions the space Bm

of boolean vectors into N sets {Si, • • ■, SN}, such that Si = { x \ f(x) = rii}. Let /; be
the characteristic function of Si, we say that / is in normal form if f(x) is represented as
YliLi fi{x) • ni- This sum can be represented as a BDD with integers as its terminal nodes.
We call such DAGs Multi-Terminal BDDs (MTBDDs) [1, 6].

Any arithmetic operation 0 on MTBDDs can be performed in the following way.

h(x) = f(x)Qg(x)
N N'

N N'

i=l j=l

N"

Y. V fi(x)9j(x)n'k
fc=l niQn'—n'l

Figure 1: BDDs for / and g

heg

iL/i "^ *L> i

f2®g fogi f&92 h © 9i

Jb % S* *b 1

hQß2

Ju i JU n

Figure 2: BDD of / 0 g

We now give an efficient algorithm for computing f(x) 0 g(x).

• If / is a leaf, then for each leaf of g, apply 0 with / as the first argument.

• If g is a leaf, then for each leaf of /, apply 0 with g as the second argument.

• Otherwise, / and g have the form in Figure 1, and the BDD for / 0 g, depending on
the relative order of X{ and Xj, is given in Figure 2.

The resulting diagram may not be in normal form. In order to convert it into normal form,
a reduction phase is needed. The algorithm for this phase is essentially identical to the
reduction phase in Bryant's algorithm for constructing BDDs [3] .

Functions that map boolean vectors into the integers can also be represented as arrays
of BDDs. These BDDs have boolean values and each corresponds to one bit of the binary
representation of the function value. In general, it is quite expensive to perform operations
using this representation.

3. Matrix Operations

Let M be a 2k x 2l matrix over N. It is easy to see that M can be represented as a
function M : Bk+l ->■ N, such that M^ = M(x,y), where x is the bit vector for i and y is
the bit vector for j. Therefore, matrices with integer values can be represented as integer
valued functions using the MTBDD representation in Section 2. We need the following
operations for integer matrices for computing the spectral transforms: absolute value, scalar
multiplication, addition, sorting a vector of integers, summation over one dimension, and
matrix multiplication. The first three operations are trivial and will not be discussed in this

paper.

• Summing matrices over one dimension

It is sometimes desirable to obtain a T vector from a 2" x 2m matrix that each element
in the vector is the summation of the corresponding column, i.e. M\ = Z^ö"1 -^'j-
When the matrices are expressed in terms of integer valued functions, the equation
becomes M'(x) = 52yM(x,y), where Zy means "sum over all possible assignments to

•y". In practice, YlyM(x,y) can be computed as:

i—2/m

X)]T}M(x,?/i,?/2,-.-,2/m)
!-Sm-l Vm

Y, {M(x, j/i, t/2,• • •, Vm-1,0) + M(x,2/x,y2,...,?/m-i, 1))

3/12/2— Vm

2/12/2-3/m-l

In this way, each variable in y is eliminated by performing an addition.

This operation can also be used to sum the elements of a vector and to obtain a two
dimensional matrix from a three dimensional matrix by summing over one dimension.
Although this operation works well in many cases, the worst case complexity can be
exponential in the number of variables.

• Sorting vectors

Frequently, it is useful to rearrange the elements in a vector so that they are in non-
decreasing order. When the number of different values in the vector is not very large,
the sorted vector can be represented concisely without using MTBDDs. In order to
uniquely determine a sorted vector, we only need to know the set of different values and
the number of occurrences of each value. Thus, the sorted vector can be represented
as a list with length m, where m is the number of different values. Each element in
the list contains the value and number of its occurrences.

It is easy to find the set of different values, since it is only necessary to collect all of
the terminal nodes in the MTBDD. The number of occurrences Nk of a possible value
Ck can be calculated as Nk - YALQ

1
^

Mi = ^k then 1 else 0). The operation of
summation over a vector discussed previously can be applied to compute this sum.
Although, in general, the complexity of the summation operation does not have a
satisfactory upper bound, summation over a vector takes time linear in the size of

the MTBDD representing the vector. Thus the complexity of the sorting operation is
linear in both the number of distinct values in the vector and the size of the MTBDD
representation of the vector.

• Matrix multiplication

Suppose that two matrices A and B have dimensions 2k x 2l and 2l x 2m, respectively.
Let C = A x B be the product of A and B, C will have dimension 2k x 2m. If we treat
A and B as integer valued functions, we can compute the product matrix C as

C(x,z) = J2A{x,y)B(y,z)
y

using the summation operation discussed above. In general, the complexity of this
operation can also be exponential in the number of variables.

4. Spectral transformations of boolean functions

Two of the most commonly used transformations in digital circuit design are the Walsh
transform and the Reed-Muller transform [9]. In this section, we will show how the MTBDD
based techniques described previously can be used to compute concise representations of the
spectra for these transformations.

The Walsh matrix Tn has the recursive definition:

To = 1 Tn =
Tn_i T„_i
Tn_i —T„_i

Each element of the matrix is determined by its row and column coordinates. We will encode
the 2" columns by variables yn,..., y\ and the 2n rows by the variables xn,... ,xj. Tn can
be represented as an integer valued function:

T(N _ f rn_i(yn_i,...,yi,xn_i,...,xi) if (xnyn / 1)
ln[yn,...,y1,xn,...,xl) - ^_Tn_^yn_U:_^yuXn_u_^jXl) if(Xnyn = i)

= Tn_i(j/n_!,...,yuxn_i,...,xx)• (if xnyn = 1 then -lelsel)

The above recursive definition can be expressed by an MTBDD as shown in Figure 3.

Tn-\

Figure 3: MTBDD for Tn

The Walsh transform maps a boolean vector / with length 2n to an integer vector of
length 2n, denoted by W/, in which each component is between —2n to 2n. The transform

can be easily expressed using the Walsh matrix, Wf = Tn x (1 - 2f) [9]. For example, the
vector [0,1,1,1,1,0,0,0]T is mapped into [0,0,0,0,-4,4,4,4] .

Likewise, the Reed-Muller matrix has the recursive definition:

5o = 1 Tn ■■

which can be expressed by

Sn-l 0
■Jri-1 <->ra-l

Q, N _ j Sn-i(yn-u---,yi,xn-i,---,xi) if(^xn)-yn = 0

= if ((->£„) • i/n) then 0 else S^-i^-i,... ,yi,zn_i,... ,xt)

and has the MTBDD representation in Figure 4.

5*71-1

Figure 4: MTBDD for £n

The Reed-Muller transformation maps a boolean vector of length 2n into another boolean
vector of the same length. This transformation can be expressed by the matrix multiplication
Rf = Sn x f. However, during the matrix mutiplication, integer addition is replaced by XOR
in order to perform the modulo 2 arithmatic. For example, the vector [0,1,1,1,1,0, 0,0] is
mapped into [0,1,1,1,1,0,0, 0] .

When the number of variables is large, the transformations can be computed by repre-
senting the matrices and the vectors as MTBDDs and matrix operations can be performed
as described in Section 3 and Section 4.

To illustrate the power of these techniques, we have computed the Walsh transformation
and Reed-Muller transformation for some large combinatorial circuits, including two adders
and some of the ISC AS benchmarks (Table 1). The examples were run on a DEC-5000 and
run time is shown in seconds.

5. Kronecker transformations

Recently, Bryant and Chen[4] have developed a new representation for functions that map
boolean vectors to integer values. This representation is called the Binary Moment Diagram
(BMD) of the function. Instead of the Shannon expansion / = xf\ -f (1 — a?)/o, they use
the expansion / = /0 + xf, where /' is equal to /i — f0- After merging the common
subexpressions, a DAG representation for the function is obtained. They prove in their

6

example circuit Walsh coef. R-M coef.
circuit | input | output # of gates |BDD| |MTBDD| time |MTBDD| time

cl908 33 9 880 3607 1850 44 27748 184

c3540 50 361 1669 520 15985 171 4679 8.2

c5315 178 813 2307 1397 7069 328 2647 25
50-bit adder 100 C50 250 151 7456 23 249 2.3
100-bit adder 200 C100 500 301 29906 128 499 11

Table 1: Experimental results for spectral transformations

— Sn-l Sn-1

Figure 5: MTBDD for Sn

paper that this gives a compact representation for certain functions which have exponential
size if represented by MTBDDs directly.

There is a close relationship between this representation and the inverse Reed-Muller
transformation [10]. The matrix for the inverse Reed-Muller transformation is defined re-
cursively by

' S„_i 0 \
—Dn_l On-l I

S0 — 1 On

which has a linear MTBDD representation as shown in Figure 5. Let i 6 Bn be the binary
representation of the integer 0 < i < T. A function / : Bn -> N can be represented as a
column vector where the value of the i-tii entry is f(i). We will not distinguish between a
function and its corresponding column vector. The inverse Reed-Muller transformation can
be obtained by multiplying the transformation matrix and the column vector / = S x /
using the technique described in previous section.

Theorem 1 The MTBDD of f is isomorphic to the BMD off.

The Kronecker product of two matrices is defined as follows:

A®B

(a\\ ... air \

B

\ Q"ril • • • "nm /

1 auB ... almB ^

\ an\B ... anmB)

The inverse Reed-Muller matrix can be represented as the Kronecker product of n identical
2x2 matrices:

The inverse Reed-Muller transformation is not unique in this respect. Other transfor-
mations that are defined as Kronecker products of 2 x 2 matrices may also provide concise
representations for functions mapping boolean vectors into integers. In particular, Reed-
Muller matrix Rn and Walsh matrix Wn can be represented as Kronecker products shown
below:

MSb -^ - 1 -iK- 1 -i •••••! -i
Although a Kronecker transformation can be performed by matrix multiplication, there

is a more efficient way of computing it. It is a well known property of the Kronecker product
that

k k

(g) Ai = n(J2-i ® Ai <g> 72*-0,
t=0 t'=0

where each A; is a 2 x 2 matrix and J^ is the identity matrix of size k x k. A transformation

of the form (Jo»-1 ® Ai (g) J2fc-t) is called a basic transformation. Let Ai = I,

and let ^ be a function represented as a MTBDD, then the basic transformation g' =

(/2i_! (g> Ai ® /2*-') x 9 can be computed as

g' = if a;,- then a00 g\Xi=o + «oi #U=i else oio ^^,=0 + an g\xi=\-

As a result of this observation, the Kronecker transformation can be performed by a series of
basic transformations. Moreover, it can be proved that the order of the basic transformations
does not effect the final result.

In fact, the Kronecker product of any non-singular 2x2 matrices can be used as a
transformation matrix and will produce a canonical representation for the function. If the
entries of the 2x2 matrix are restricted among {0,1, —1}, there are six interesting matrices

(o !)'(-i i)'0 iM-1 i)'(i i)'"^-1 0"
All other matrices are either singular or would produce BDDs that are isomorphic to one of
the six matrices.

We have applied these transformations to the functions discussed in paper[4]. The trans-
formation can be partitioned into two groups of three each. The MTBDDs of the results
after applying the transformations in the same group have the same complexity.
Let X = YZ=o Xi2\Y = £"Lo yß\ Xj = EZO ^2\ then

base matrix X X2 XY Xk uUXj
0(2n) 0(2 2ni 0(2n+m) 0(2kn) o(uU2nj)
0(n) 0{n2 0{nm) 0(nk) OOlL, «i)

The possibility of using BMDs to represent boolean functions is discussed in [4]. In gen-
eral, the BMD does not appear to be better than the ordinary BDD for representing boolean
functions. In order to see why this is true, consider the boolean Reed-Muller transformation,
which is sometimes called the Functional Decision Diagram or FDD [8]. This transformation
can be obtained by applying the modulo 2 operations to all of the terminal nodes of the
BMD. Consequently, the size of FDD is always smaller than the size of the BMD. Since the
inverse boolean Reed-Muller transformation is the same as the boolean Reed-Muller trans-
formation, the FDD of the FDD is the original BDD. Therefore, for every function / such
that |FDD/| < |BDD/|, there exists another function /' which is the boolean Reed-Muller
transform of / such that |BDD/<| < |FDD//|. In particular, both the BMD and the FDD
representations for the middle bit of a multiplier are still exponential.

6. Hybrid decision diagrams

In the previous sections, we have discussed transformations that can be represented as the
Kronecker product of a number of identical 2x2 matrices. If the transformation matrix is
a Kronecker product of different 2x2 matrices, we still have a canonical representation of
the function. We call transformations obtained from such matrices hybrid transformations.

A similar strategy has been tried by Becker [7]. However, his technique only works for the
boolean domain. When using his technique, all of the transformation matrices, the original
function and the resulting function must have boolean values. Our technique, on the other
hand, works over the integers. By allowing integer values, we can handle a wider range of
functions. Moreover, we can obtain larger reduction factors since we have more choices for
transformation matrices.

We can apply this idea to reduce the size of MTBDD representation of functions. Since
there is no known polynomial algorithm to find the hybrid Kronecker transformation that
minimizes MTBDD size, we use a greedy algorithm to reduce the size. If we restrict the
entries in the matrix to the set {0,1, —1}, then there are six matrices we can try. For each
variable, we select the matrix that gives the smallest MTBDD size. The MTBDDs obtained
from such transformations are called Hybrid Decision Diagrams (HDDs). We have tried this
method on the ISCAS85 benchmark circuits. In some cases we have been able to reduce
the size of BDD representation by a factor of 1300. However, reductions of this magnitute

9

usually occur when the original function has a bad variable ordering. If dynamic variable
ordering is used, then our method gives a much smaller reduction factor.

example circuit without reordering with reordering
circuit input output BDD BMD |HDD BDD BMD |HDD|

cl355 41 1327 9419 1217689 2857 4407 478903 1518
cl908 33 12 3703 140174 1374 1581 154488 632
c5315 178 676 679593 2820 521 108 5106 107

Table 2: Experimental results for hybrid transformations of some ISCAS85 circuits

We have tried several techniques to increase the number of possible matrices. The first
technique involves increasing the number of entries in the matrices. This can be accom-
plished by allowing the entries to take larger values or by using the complex numbers
{0,l,—l,i,—i,l + i, 1 — i,i — 1, — i — 1}. Unfortunately, neither extension improved the
results significantly.

The second technique involves using transformation matrices that are Kronecker products
of larger matrices. For example, we have tried hybrid Kronecker transformations based on
4x4 matrices instead of 2 x 2 matrices. Although we have been able to reduce the BDD
size even further using this technique, the time it takes to find such transformations is much
bigger since the number of possibilities is considerably larger.

Note that our technique can achieve comparable and sometimes better results than dy-
namic variable reordering. Thus, in some cases, it can serve as an alternative to dynamic
variable reordering. We conjecture that the combination of both techniques together may
result in reductions that neither technique can achieve alone.

7. Arithmetic operations on hybrid decision diagrams

In order to make the techniques described in the previous sections more useful, it is desirable
to be able to perform various arithmetric operations on on hybrid BDDs. In this paper, we
only consider the cases of addition and multiplication of two integers.

Suppose that / is transformed into /' by the matrix T\ and g is transformed into g' by
the matrix T2 using the techniques discussed in the previous sections. Scalar multiplication
is simple to perform.

(cf)' = Tr x (cf) = cT1xf = cf

When T-i — T2, finding the sum of two function is also simple.

(f + g)' = T1x(f + g) = T1xf + T1xg = f + g'

If Ti ^ T2, the transformation applied to the sum must be determined first. Suppose we use
T2 as the transformation matrix for the result,

(f + g)' = T2 x (f + g) = T2x f + T2 x g = T2 xT,'1 x f + g'.

10

Next, we consider how to perform multiplication. We choose T2 as the transformation
matrix for (/ • g). Suppose the top level variable is a?;. Assume the top level transform for

/is
an a12

«21 «22

&11 W2 N

"21 O22

with inverse

with inverse
w21 "22

12

21 a22
I. Assume also the top level transform for g is

. Then T2 =
on b12

Ö21 022
S2

buS2 b\2S2

V2\02 O22O2

r
Figure 6: BDDs for /' and g

(f-9)i (f-g)'r

(f ■ 9)'

Figure 7: BDD of (/ • g)'

(f-g)' = T2x(f-g)

_ (hiS2 W2S2 \ x (f°' 9o
\ b2iS2 b22S2 j \ fi ■ 9t

(bnifo-goY + buih-gi)' ^
{ M/o-<7o)' + M/i-<7i)'y

Consequently.

U'9)'i = MioW + M/i-s'i)'
= M(aii/i + a'i2/r) • (b'u9i + b'129r))' + MKi/f + a22fr) • (b'21gi + b'22gr))'

= (^liaii^ii + b12a'21b'n)(fi ■ gi)' + (bua'nb'12 + b12a'21b'22)(fi ■ gr)'

+ (b11a'12b'u + b12a22b'21)(fr ■ gi)' + (bua'12b'12 + b12a'22b'22)(fr ■ gr)'

(f-g)'r = b21(f0 ■ go)'+ b22(h ■ gi)'

11

= hiiWufi + a'ufr) ■ {b'ugi + b'12gr))' + b22{(a21fi + a'22fr) ■ {b'21gt + b'22gr))'

= {b2ia'nb'n + b22a'21b21)(fi ■ gi)' + {b21a'nb'12 + b22a'21b'22)(fi ■ gr)'

+(b21a'12b'u + b22a'22b21)(fr ■ gi)' + {b21d12b'l2 + b22a'22b'22)(fr ■ gr)'

Since both (/ • g)\ and (/ • g)'r can be computed in terms of (// • gi)', (// • gr)', (fr ■ gi)', and
{fr ■ gr)', we can compute the transformation of the product in a recursive manner. If we
store these intermidiate results, the total number of recursive calls to compute (/ • g)' will
be at most |/'||<7'|. Because of the additions that are needed in the computation, the worst
case complexity can still be exponential. However, in practice, this algorithm works quite
well. As an example, in Table 3, we show the time it takes to compute the hybrid decision

diagram for (ELo^2') • (E"=o2/j2J) from tne hybrid decision diagrams for (EiLo^2') and

(E-=o^).

n 10 20 30 40 50 60 70 80 90 100
time(sec) 1.6 2.0 2.2 2.5 3.0 3.5 3.5 4.5 5.5 6.6
|HDD| 139 479 1019 1759 2699 3839 5179 6719 8459 10399

Table 3: Experimental results for computing (ELo^2*) * (Ej=o2/i2i)

Now that we are able to add and multiply functions, we can perform all of the standard
logical operations. For example (->/)' = (1 - /)' = V - f and (/ A g)' = (/ • g)'.

8. Equations and inequalities

Frequently, it is useful to be able to compute the set of assignments that satisfy /i ~ f2,
where ~ can be one of =, ^, <, <, >, or >. For example, the following inequality is extremely
important for the correctness of the radix-4 SRT floating point division algorithm.

—2 • divisor < 3 • remainder < 2 • divisor

Both divisor and remainder in the inequality can be regarded as arrays of boolean variables.
In order to verify the correctness of the algorithm, it is necessary to determine the set of
assignments to these variables that make the inequality true.

Finding the set of assignments that satisfy an inequality can be reduced to the problem
of finding the set of assignments that make a function / positive. Equations can be handled
in a similar manner. A straightforward way of solving the problem is to convert / to an
MTBDD and then pick the terminal nodes with the correct sign. However, this does not
work very well in general, because some functions have MTBDDs with exponential size but
hybrid BDDs of polynomial size. For example, let /i = E£Lo xi^% and /2 = Y^LoVj^ ■ Both
of these functions and their difference have linear size BMDs. The BDD for the set of
assignments satisfying f\ — f2 > 0 also has linear size. But the MTBDD size for /i — f2 is
exponential.

12

We have developed an algorithm that can substantially reduce the cost for computing
arithmetic relations between certain functions represented by hybrid decision diagrams. In
the process, we only need to know the sign of the function values. Thus, if we find out that
all of the values in a sub-HDD have the same sign, we can conclude that all assignments
in the sub-HDD will have the same value for the relation. Consequently, we don't need to
continue to expand this sub-HDD.

To obtain a good algorithm for this problem, it is necessary to determine efficiently if a
sub-HDD has uniform sign. This can be achieved by computing upper and lower bounds for
the sub-HDD. The algorithm given below determines this information. If the intermediate
results are stored, the algorithm takes time linear in the number of BDD nodes.

bound_values(f, upper, lower)
begin

if(f is terminal node)
upper = lower = f.value;

bound_values(left(f), upperl, lowerl);
bound_values(right(f), upper2, lower2);

let {{all, al2}, {a21, a22}} be the inverse matrix at node f;

upperll = if all>0 then all*upperl else all*lowerl;
upperl2 = if al2>0 then al2*upper2 else al2*lower2;
upper21 = if a21>0 then a21*upperl else a21*lowerl;
upper22 = if a22>0 then a22*upper2 else a22*lower2;

lowerll = if all>0 then all*lowerl else all*upperl;
lowerl2 = if al2>0 then al2*lower2 else al2*upper2;
lower21 = if a21>0 then a21*lowerl else a21*upperl;
lower22 = if a22>0 then a22*lower2 else a22*upper2;

upper = max(upperll + upperl2, upper21 + upper22);
lower = min(lowerll + lowerl2, lower21 + lower22);

end

The improved algorithm for computing the BDD for the set of assignments that make the
function / positive is given below. A similar algorithm is used to find the set of assignments
that make a function zero.

bdd greater_than_0(f)
begin

if(f is terminal node)
if(f.value > 0)

return(True);

13

else
return(False);

bound_values(f, upper, lower);

if(upper <= 0)
return(False);

if(lower > 0)
return(True);

let {{all, al2}, {a21, a22}} be the inverse matrix at node f;
left = greater_than_0(all * left(f) + al2 * right(f));
right = greater_than_0(a21 * left(f) + a22 * right(f));
return(bdd_if_then_else(level(f), left, right));

end

This algorithm works extremely well for verification of arithmetic circuits. The following
theorem guarantees the efficiency of this algorithm for the set of linear expressions when
the Hybrid Decision Diagrams are BMDs. Most of the formulas that occur during the
verification of the SRT division algorithm are in this class. These expressions have the form
/ = YT=i cifii where /; = S"=o xifi' for 1 < i < m and the c,'s are integer constants. We use
the variable ordering xln, x^n-, • • •, xmn,..., xw, x2o, ■■■, xmo- Because f\Xij=i — f\Xij=o = &
is a constant, the BMD for / is shown in Figure 8.

X n
c 2

2

J£.

y X n
c„2

*io)

c
2

m(V

Figure 8: BMD for Z?=i c,-/<

Theorem 2 The complexity o/greater_than_0 for f is 0(n2 YJk=\ M)-

14

A (: »

time(sec)

4.0

■"3.6

3.0

^~15 2.5

2.7

3.0

-^12
3.4

2.0

1.7

■^la
'7.2

1.0

0.0
No. of bits

60 90

Figure 9: time to compute -2 • divisor < 3 • remainder < 2 • divisor

In the case of linear inequalities, all the new BMDs that are generated have the form of
c + g, where c is a constant and g is an existing BMD. If we remember the constant without
actually adding it to the BMDs, we are able to avoid generating new BMD nodes. After
introducing this technique, the complexity to compute greater_than_0(f) can be further
reduced to 0(n£™=i W\)- For the example we considered at the beginning of the section,
the relationship between the time it takes to compute the inequality and the number of bits

is shown in the Figure 9.

9. Summary and directions for future research

In this paper, we have used MTBDDs to represent functions that map boolean vectors
into integers. We have also shown how to represent large integer matrices concisely and
perform standard matrices operations such as scalar multiplication, matrix addition and

matrix multiplication.

The Walsh and Reed-Muller transforms are given by matrices that have simple recursive
definition. Because of this, the transforms can be computed efficiently using MTBDDs. In
fact, we are able to find the transforms of boolean functions with several hundred variables.

We discuss the relationship between spectral transforms and binary moment diagrams
and describe a generalization called the hybrid decision diagram which is often much more
concise. We also give an efficient implementation of arithmetic operations on hybrid decision

diagrams.

Computing the BDD for the set of variable assignments that satisfy an arithmetic relation
is important for reasoning about arithmetic circuits. We give an efficient algorithm for this
purpose. Finally, we prove that for the class of linear expressions, the time complexity of
our algorithm is linear in the number of variables.

15

In [6], we show how our technique for computing the Walsh transform can be used in
technology mapping. Permutation and complementation of input variables does not change
the sorted absolute values of the Walsh spectrum of a boolean function. Thus, by comparing
the Walsh spectra of two boolean functions, we obtain a necessary condition for determining
if one can be changed to the other by these operations.

The algorithms for performing arithmetic operations and finding the set of variable as-
signments that satisfy an arithmetic relation make it possible to extend the symbolic model
checking algorithms so that they can be used to verify the properties of data paths in addi-
tion to controlling circuitry. In a forthcoming paper, we plan to discuss how this technique
can be used to verify an SRT algorithm that is similar to the division circuit that is used in
the Pentium processor.

There are other possible applications of the techniques discussed in this paper. MTBDDs
enable us to represent and manipulate very large matrices efficiently. Some potential appli-
cations include image compression, numerical solution of partial differential equations and
computation of limit state probabilities for Markov Chains. Since hybrid decision diagrams
tend to be more concise than multi-terminal BDDs, they may prove even more useful for
this type of application.

References

[1] R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii, A. Pardo, and
F. Somenzi. Algebraic decision diagrams and their applications. In Proceedings of the
1993 Proceedings of the IEEE International Conference on Computer Aided Design.
IEEE Computer Society Press, November 1993.

[2] R. Bellman. Introcution to matrix analysis, chapter 5. McGraw-Hill, 1970.

[3] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans-
actions on Computers, C-35(8), 1986.

[4] R. E. Bryant and Y. A. Chen. Verification of arithmetic functions with binary moment
diagrams. In Proceedings of the 32nd ACM/IEEE Design Automation Conference. IEEE
Computer Society Press, June 1995.

[5] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic
model checking: 1020 states and beyond. Information and Computation, 98(2):142-170,
June 1992.

[6] E. M. Clarke, K. McMillan, X. Zhao, M. Fujita, and J. Yang. Spectral transforms for
large boolean functions with applications to technology mapping. In Proceedings of the
30th ACM/IEEE Design Automation Conference. IEEE Computer Society Press, June

1993.

[7] R. Drechsler, A. Sarabi, M. Theobald, B. Becker, and M. A. Perkowski. Efficient rep-
resentation and manipulation of switching functions based on ordered kroenecker func-
tional decision diagrams. In Proceedings of the 32nd ACM/IEEE Design Automation
Conference. IEEE Computer Society Press, June 1994.

16

m it

[8] R. Drechsler, M. Theobald, and B. Becker. Fast ofdd based minimization of fixed
polarity reed-muller expressions. In Proceedings of the Proceedings of the European
Design Automation Conference. IEEE Computer Society Press, June 1994.

[9] S. L. Hurst, D. M. Miller, and J. C. Muzio. Spectral Techniques in Digital Logic.
Academic Press, 1985.

[10] D. E. Müller. Application of boolean algebra to switching circuit design and error
detection. IRE Trans., 1:6-12, 1954.

17

